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We outline the elements of linear least squares fitting theory and show how to obtain 
errors on fitted parameters. The theory is in fact general for all cases where the 
dependence of the predicted values on fitted parameters can be linearized, i.e. the 
likelihood function is Gaussian near the maximum likelihood point.. We illustrate the 
main ideas using track fitting as a concrete example. 
 

Notation 
 
Let ui

p ,i=1,n denote the predicted co-ordinates of the track at wire plane i at z co-ordinate 
zi. The orientation of the wire plane with respect to the x- axis is given by the unit vector 
β,  which is perpendicular to the z- axis. Let the track fitted parameters be denoted by ak 
(k=1,p). In three dimensions, the number of parameters to describe a track are the x,y co-
ordinates at a particular value of z, the momentum and the direction of the track at the x,y 
point. This makes for a total of 5 parameters, i.e p=5. If the momentum is not being fit, 
then only four parameters are needed. In this case p=4. 
 
The error matrix E of the measured quantities ui is defined by 
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where the brackets <> are meant to denote the average over many events. If the quantities 
i,  and j are un-correlated for i≠j, then E is a diagonal matrix. For tracks, this is clearly the 
case, since the measurements of the various planes are un-correlated. The diagonal 
elements of the matrix E are the variances of the quantities ui, denoted by σ2

i. 

 
Let us denote by the vector Xi, the quantities ui-ui

p. Let the matrix H denote the inverse of 
the error matrix E. H is known in the jargon as the Hessian matrix. Then the generalized 
χ2 (valid in the presence of correlations) of a fit is given by  
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Since the predicted values ui
p are functions of the track fit parameters ak,k=1,p, then so is 

χ2. 
 



Fitting 
Fitting is performed by minimizing χ2 with respect to the parameters ak,k=1,p.   We 
linearize the problem by assuming that the predicted values ui

p are linear functions of the 
parameters ak. This is certainly true of straight line fits. i.e 
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where λik is a n by p matrix that is not square in general. Repeated indices imply summing 
over (i.e in the above equation, we imply summing over the index k). 
 
Then χ2 can be expressed as 
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where we have used the fact that H is a symmetric matrix, i.e Hij=Hji. 
 
At the minimum of χ2, 
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Linearizing, 
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so at minimum, 

ijkij
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substituting for ui
p. 

 

ijkijliljkij uHaH λλλ =  
The above set of equations (there are p of them) can be abbreviated in matrix form by 

klkl NaM =  
where the square (p by p) matrix Mkl=Hijλjkλil and the (1 by p) row vector Nk =Hijλjkui. 

 

This matrix equation can be inverted yielding the fitted parameters ak. 

( ) lklk NMa 1−=  

 



Errors of the fitted parameters 
 
Just as the measured quantities ui possess an error matrix E and its inverse H (these are n 
by n matrices), the fitted quantities ak also possess an error matrix ε and its inverse 
denoted by η. These are (p by p) matrices. Let us denote the minimum  χ2  as χ2

min   and 
the fitted parameters as a*

m,m=1,p. We need to ask how the χ2 changes as we change the 
parameters by small increments δam away from the minimum. As we change the 
parameters, the predicted values  will change by δui

p  and the χ2 change can be written 
(using equation (3)) 
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Just as in measurement space, the minimization of χ2 implies maximizing a Gaussian 
likelihood function, with an error matrix given by E, as in equation (1 and 2), 
in parameter space, the same likelihood function is expressed by the error matrix ε of the 
parameters and its inverse Hessian η.  Thus, using equation (4), 
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Since this is true for arbitrary changes of parameters δak, this implies η=M, leading to 

1−= Mε  
It should be noted that χ2 is distributed as a Γ variate with n-p degrees of freedom. To 
show this is straight forward, but beyond the scope of this write-up. 

Equations for straight lines in 3 dimensions 
 
The above theory (called linearized least squares fitting) assumes that near the χ2 
minimum, the χ2 as a function of the parameters is parabolic. Most problems can be 
approximated in this fashion near the minimum to second order. The first order terms in a 
Taylor expansion are zero (since it is a minimum) and the second order terms dominate 
and the third order terms can be neglected. This is how the MINUIT program 
(subprogram MIGRAD) works. 
 
We can use the above theory for fitting helices as well as straight lines in the beam 
chambers. To do this, all one needs to do is to work out ui

p as a function of the straight 
line parameters in three dimensions. For the beam chambers, we will work in cylindrical 
co-ordinates with the z-axis being the axis of symmetry. Then the equation for a straight 
line in 3D is 
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where r

r
is the vector denoting a point on the straight line at z co-ordinate z and c

r
 is the 

value of r
r

  
when z=0.  m

r
 is the slope vector whose x,y,z components are given by (tanθ cos φ, tan θ 

sin φ, 1). 
θ is the angle wrt z axis and φ is the angle of the projection of the straight line in the x-y 
plane wrt x-axis. 
 
The wire planes are specified by their z co-ordinate zi, i=1,n and their β vectors β i   such 
that the predicted co-ordinate ui

p is given by 
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The vector β i   has components (cosβ i, sinβ i, 0) where β i is the angle of the wires w.r.t to 
the y –axis. An x-measuring chamber has wires running along the y –axis. 
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Figure 1 Chamber geometry with wire directions shown.  z axis is out of  the paper. The sign of the 

angle β i  is positive counter-clockwise from the y axis. 

 
With these conventions, the parameters of the track (p=4) can be taken to be  (mx,my,cx 
and cy). With these conventions, equation 5 reduces to 
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There is no implied sum over i in the above equation or the ones below. 
 

The functions λik can thus be trivially determined by differentiation with the convention 
k=1,4 implying in turn (cx, cy, mx and my). 
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We can now proceed with the fit. This involves inverting a 4 by 4 matrix M. The fitted 
parameters are correlated since the wire planes are neither pure x nor y measuring planes.  


